Lecture 4:

Miscellaneous

Features

Parameterised Data TypesI

Fortran 77 had a problem with numeric portability,
the precision (and exponent range) between pro-
cessors could differ,

Fortran 90 implements a portable precision select-
ing mechanism,

intrinsic types can be parameterised by a kind value
(an integer). For example,

INTEGER(KIND=1) :: ikl
REAL(4) :: rk4

the kind parameters correspond to differing preci-
sions supported by the compiler (details in the com-
piler manual).

objects of different kinds can be mixed in arithmetic
expressions but procedure arguments must match in
type and Kind.

81

Integer Data Type by KindI

O selecting kind, by an explicit integer is still not
portable,

O must use the SELECTED_INT_KIND intrinsic function.
For example, SELECTED_INT KIND(2) returns a Kkind
number capable of expressing numbers in the range,
(—102,10%).

O here the argument specifies the minimum decimal
exponent range for the desired model. For example,

INTEGER :: short, medium, long, vlong

PARAMETER (short = SELECTED_INT_KIND(2), &
medium= SELECTED_INT_KIND(4), &
long = SELECTED_INT_KIND(10),&
vlong = SELECTED_INT_KIND(100))

INTEGER (short) :: a,b,c
INTEGER (medium) :: d,e,f
INTEGER (long) :: g,h,i

82

Constants of Selected Integer KindI

O Constants of a selected kind are denoted by ap-
pending underscore followed by the kind number or
an integer constant name (better):

100_2, 1238_4, 54321_long

O Be very careful not to type a minus sign ‘-’ instead
of an underscore ‘_'!

O There are other pitfalls too, the constant

1000_short

may not be valid as KIND = short may not be able
to represent numbers greater than 100. Be very
careful.

83

Real KIND Selection I

Similar principle to INTEGER:

O SELECTED_REAL _KIND(8,9) will support numbers with
a precision of 8 digits and decimal exponent range
from (—9,9). For example,

INTEGER, PARAMETER ::
r1 = SELECTED_REAL_KIND(5,20), &
r2 = SELECTED_REAL_KIND(10,40)
REAL (KIND=r1) 11X, Y, Z
REAL(r2), PARAMETER :: diff = 100.0_r2

O COMPLEX variables are specified in the same way,

COMPLEX (KIND=r1) :: cinema
COMPLEX(r2) :: inferiority = &
(100.0_r2,99.0_r2)

Both parts of the complex number have the same
numeric range.

84

Kind Functions I

it is often useful to be able to interrogate an object
to see what kind parameter it has.

KIND returns the integer which corresponds to the
kind of the argument.

for example, KIND(a) will return the integer param-
eter which corresponds to the kind of a. KIND(20)
returns the kind value of the default integer type.

the intrinsic type conversion functions have an op-
tional argument to specify the kind of the result,
for example,

print*, INT(1.0,KIND=3), NINT(1.0,KIND=3)
x = x + REAL(j,KIND(x))

85

Mixed Kind EXxpression EvaluationI

Mixed kind expressions:

O If all operands of an expression have the same type
and kind, then the result also has this type and kind.

O If the kinds are different, then operands with lower

range are promoted before operations are performed.
For example, if

INTEGER(short) :: members, attendees
INTEGER(long) :: salaries, costs

the expression:
¢ members + attendees iS Of kind short,
¢ salaries - costs iS of kind long,

¢ members * costs iS also of kind long.

O Care must be taken to ensure the LHS is able to
hold numbers returned by the RHS.

86

Kinds and Procedure Argumentsl

Dummy and actual arguments must match exactly in
kind, type and rank, consider,

SUBROUTINE subbie(a,b,c)

USE kind_defs

REAL(r2), INTENT(IN) :: a, c
REAL(r1), INTENT(OUT) :: b

an invocation of subbie must have matching arguments,
for example,

USE kind_defs
REAL(r1) :: arg?2
REAL(r2) :: arg3

CALL subbie(1.0_r2, arg2, arg3)

Using 1.0 instead of 1.0_r2 will not be correct on every
compiler.

This is very important with generics.

87

Logical KIND Selection I

There is no SELECTED_LOGICAL_KIND intrinsic, how-
ever, the KIND intrinsic can be used as normal.

For example,

LOGICAL(KIND=4) :: yorn = .TRUE._4
LOGICAL(KIND=1), DIMENSION(10) :: mask
IF (yorn .EQ. LOGICAL(mask(1),KIND(yormn)))...

KIND=1 may only use one byte of store per variable,

LOG CAL(KI ND=1) 1 byte

LOG CAL(KI ND=4) 4 bytes

Must refer to the compiler manual.

88

Character KIND Selectionl

O Every compiler must support at least one character
set which must include all the Fortran characters.
A compiler may also support other character sets:

INTEGER, PARAMETER :: greek = 1
CHARACTER (KIND=greek) :: zeus, athena
CHARACTER(KIND=2,LEN=25) :: mohammed

O Normal operations apply individually but characters
of different kinds cannot be mixed. For example,

print*, zeus//athena ! OK
print*, mohammed//athena ! illegal
print*, CHAR(ICHAR(zeus),greek)

Note CHAR gives the character in the given position
in the collating sequence.

O Literals can also be specified:
greek "adapu"

Notice how the kind is specified first.

89

Mathematical Intrinsic FunctionsI

Summary,

AC0OS (x) arccosine

ASIN(x) arcsine

ATAN(x) arctangent

ATAN2(y,x) | arctangent of complex num-
ber (z,y)

C0S (x) cosine where z is in radians

COSH(x) hyperbolic cosine where z is in
radians

EXP(x) e raised to the power z

LOG(x) natural logarithm of x

LOG10(x) logarithm base 10 of z

SIN(x) sine where z is in radians

SINH(x) hyperbolic sine where z is in
radians

SQRT (x) the square root of z

TAN (x) tangent where z is in radians

TANH(x) tangent where x is in radians

90

Numeric Intrinsic Functionsl

Summary,

ABS(a) absolute value

AINT(a) truncates a to whole REAL
number

ANINT (a) nearest whole REAL number

CEILING(a) smallest INTEGER greater than
or equal to REAL number

CMPLX(X,y) convert to COMPLEX

DBLE (x) convert to DOUBLE PRECISION

DIM(x,y) positive difference

FLOOR(a) biggest INTEGER less than or
equal to real number

INT (a) truncates a into an INTEGER

MAX(al,a2,a3,...) | the maximum value of the
arguments

MIN(al,a2,a3,...) | the minimum value of the
arguments

MOD(a,p) remainder function

MODULO(a,p) modulo function

NINT(x) nearest INTEGER tOo a REAL
number

REAL (a) converts to the equivalent
REAL value

SIGN(a,b) transfer of sign —
ABS(a)*(b/ABS(b))

91

Character Intrinsic Functionsl

Summary,

ACHAR (i) i" character in ASCII collating
sequence

ADJUSTL(str) adjust left

ADJUSTR(str) adjust right

CHAR (i) it" character in processor col-
lating sequence

TACHAR(ch) position of character in ASCII
collating sequence

ICHAR (ch) position of character in pro-

cessor collating sequence
INDEX (str,substr) | starting position of substring

LEN(str) Length of string
LEN_TRIM(str) Length of string without trail-
ing blanks

LGE(stril,str2) lexically .GE.

LGT(strl,str2) lexically .GT.

LLE(strl,str2) lexically .LE.

LLT(strl,str2) lexically .LT.

REPEAT (str,i) repeat 7 times

SCAN(str,set) scan a string for characters in
a set

TRIM(str) remove trailing blanks

VERIFY(str,set) verify the set of characters in
a string

92

Bit Manipulation Intrinsic FunctionsI

Summary,
BTEST(i,pos) bit testing
TIAND(i, j) AND
IBCLR(i,pos) clear bit
IBITS(i,pos,len) bit extraction
IBSET(i,pos) set bit
IEOR(i, j) exclusive OR
IOR(i,j) inclusive OR
ISHFT(i,shft) logical shift
ISHFTC(i,shft) circular shift
NOT (i) complement
MVBITS (ifr,ifrpos, move bits (SUB-
len,ito,itopos) ROUTINE)

Variables used as bit arguments must be INTEGER valued.
The model for bit representation is that of an unsigned
integer, for example,

s1 3 2 10

1
o

0|..]0 0 O O | value

s1 3 2 1 0
O ../10 1 0 1| value

1
ol

s1 3 2 1 0
0 0O 0 1 1| value

3

The number of bits in a single variable depends on the
compiler

93

Array Construction IntrinsicsI

There are four intrinsics in this class:

O MERGE (TSOURCE,FSOURCE,MASK)— merge two arrays un-
der a mask,

O SPREAD(SOURCE,DIM,NCOPIES)— replicates an array by
adding NCOPIES of a dimension,

O PACK(SOURCE,MASK[,VECTOR])— pack array into a one-
dimensional array under a mask.

O UNPACK(VECTOR,MASK,FIELD)— unpack a vector into
an array under a mask.

94

TRANSFER Intrinsic I

TRANSFER converts (not coerces) physical representation
between data types; it is a retyping facility. Syntax:

TRANSFER (SOURCE,MOLD)
O SOURCE is the object to be retyped,

O MOLD is an object of the target type.

REAL, DIMENSION(10) :: A, AA
INTEGER, DIMENSION(20) :: B
COMPLEX, DIMENSION(5) :: C

A..; TRANSFER(B, (/ 0.0 /))
AA = TRANSFER(B, 0.0)
C = TRANSFER(B, (/ (0.0,0.0) /))

INEGER [0]..]o 1 0 1]B
REAL 0o ..Jo 10 1]a
REAL J.Jo10 1]mm
coplex [0 ..Jo 1 0 1]c

95

Fortran 95 I

Fortran 95 will be the new Fortran Standard.

O FORALL statement and construct
FORALL(i=1:n:2,j=1:m:2)
A(i,j) = ix*j
END FORALL

O nested WHERE constructs,

O ELEMENTAL and PURE procedures,

O user-defined functions in initialisation expressions,

O automatic deallocation of arrays,

O improved object initialisation,

O remove conflicts with IEC 559 (IEEE 754/854) (float-
ing point arithmetic),

O deleted features, for example, PAUSE, assigned GOTO,
cH edit descriptor,

O more obsolescent features, for example, fixed source
form, assumed sized arrays, CHARACTER*x< /en > dec-
larations, statement functions,

O language tidy-ups and ambiguities (mistakes),

96

High Performance FortranI

High Performance Fortran (or HPF) is an ad-hoc stan-
dard based on Fortran 90. It contains

O Fortran 90,

O syntax extensions, FORALL, new intrinsics, PURE and
ELEMENTAL procedures,

O discussion regarding storage and sequence associa-
tion,

O compiler directives:

'HPF$ PROCESSORS P(5,7)
'HPF$ TEMPLATE T(20,20)
INTEGER, DIMENSION(6,10) :: A
'HPF$ ALIGN A(J,K) WITH T(J*3,K*2)
'HPF$ DISTRIBUTE T(CYCLIC(2),BLOCK(3)) ONTO P

o7

Data Alignment

| | | | | | | | | —
- N ' em I o H N m S
, , , , , , , , , -
, , , , , , , , , %\
'Ol 1 O1 : 10 1 O O 1 CH
~ b T P A P T A P [b ™~ -
I . I ' I . I ' I . I I . I ' I o
\\\\\ \\\\r\+\L\L\\F\«\L\L\\F\m\\L\\\\F\W\\L\\T\F\\\x\\\\ %
“““ O 1 0, 0 10 O 0 @
“““ T e e e 5}
© [[; [[; [[[[; [© e
“““““ e e Rl B B I S R A Bl S S o
1O [O IOE [O 1O [O
\\\\\ \\\\T\W\L\\”\\T\W\L\\”\\T\J\L\\”\\T\W\L\\\\T\?\l\\\\
[: [; [: [[: [[: [: [—
“““““ L e e N e
o | O O O O O 0 o
Co o |
\\\\\ - TTrITCAaT TSI T oA ST Tr T T AT T TSI T TaT TSI T oo =
1O [O ” 1O [O 1O [O 2
“““““ R S SR AL S L SR EEL LI AR AR SERRURRRLARELI SRR SREE o
< | o TSR R TR AU B < 5
O 1ol o oy oo :
\\\\\\\\\ e e e _n_l.v
I : I ; I I I : I I : I I
SRS ; , , reee | , : , [
: ” , : | | : ! !
: , by | , , ®
” . Ll . o
: , , : , ,
” | | , |
” i | | ,
: , , , , o =
, , | | >
, , =
- - - - >
k . g
” | <
| —
,
| ®
I
,
|
,

A(6,1)

98

